Efficient object classification using the Euler characteristic

Erik José Amézquita Morataya
 to obtain the degree of
 Licenciado en matemáticas

División de Ciencias Naturales y Exactas
Universidad de Guanajuato

$$
\text { 16:00h, } 28 \text { - MAY - } 2018
$$

Main goal: understand the morphology of pre-Columbian masks

- Between 1978 and 1982 several offerings were excavated in Templo Mayor (Mexico City).
- Among the artifacts, 162 pre-Columbian masks were found.
- It is unclear how many and which cultures are exactly represented.
- The actual classifications are prone to subjectivities.
- With Topological Data Analysis (TDA) tools we pretend to provide a more objective understanding of these masks' morphology.

Acknowledgements

- Antonio Rieser, for his constant advising throughout the thesis.
- Mario Canul, for teaching me on how to computationally handle the data.
- Red Temática CONACYT de Tecnologías Digitales para la Difusión del Patrimonio Cultural (RedTDPC) and the Instituto Nacional de Antropología e Historia (INAH) for providing the data that made this thesis.
- Veranos de Investigación Científica AMC 2016.

The thesis is quite modular

(1) Simplicial homology
(2) Euler Characteristic Graph (ECG)
(3) Support Vector Machines (SVM)
(4) Unsupervised SVMs
(5) Archaeological data

6 Conclusions and future work

Ch. 1: Simplicial Homology

- Take $\mathbf{v}_{0}, \ldots, \mathbf{v}_{d} \in \mathbb{R}^{d}$ vertices in general position.
- The \boldsymbol{d}-simplex is the convex hull of these vertices.

$$
S_{d}:=\left\{\sum_{i=0}^{d} \lambda_{i} \mathbf{v}_{i}: \lambda_{i} \geq 0, \sum_{i=0}^{d} \lambda=1\right\}
$$

d-simplices for $d=0,1,2,3$

- We'll denote simplices as $\sigma=\left(\mathbf{v}_{0}, \mathbf{v}_{1}, \ldots, \mathbf{v}_{d}\right)$.
- Refer to $\tau=\left(\mathbf{v}_{0}, \mathbf{v}_{1}, \ldots, \mathbf{v}_{d-1}\right)$ as a face of σ.
- A simplicial complex is a collection of nicely glued simplices.
- Every simplex comes will all its faces.
- Any two neighboring simplices share a whole face.

- The dimension of a dimension is the dimension of its highest dimensional simplex.

Orientatation and compatibility

- $\sigma=\left(\mathbf{v}_{0}, \mathbf{v}_{1}, \ldots, \mathbf{v}_{d}\right)$ denotes one of two possible different orientations.

(a) Compatibly oriented triangles

(b) Incompatibility

Chains and Homomorphisms

- Group of \boldsymbol{q}-chains $C_{q}=\left\{\sum_{k=1}^{r} \lambda_{k} \sigma_{k}: \lambda_{k} \in \mathbb{Z}, \sigma_{k}\right.$ un q-simplejo $\}$.
- $-\sigma$ has opposite orientation to σ.
- Define an homomorphism φ by defining for every simplex and then extend it linearly.
- Just have to verify that $\varphi(-\sigma)=-\varphi(\sigma)$.
- $\varphi(c)=\sum \lambda_{k} \varphi\left(\sigma_{k}\right)$

(a) 1-chain

(b) 2-chain

Boundary homomorphism $\partial_{q}: C_{q} \rightarrow C_{q-1}$

- $\partial \sigma=\sum_{i=0}^{q}(-1)^{i}\left(\mathbf{v}_{0}, \ldots, \mathbf{v}_{i-1}, \mathbf{v}_{i+1}, \ldots, \mathbf{v}_{n}\right)$.
- $\partial^{2}=\partial_{q} \circ \partial_{q-1}=0$.

$$
\partial_{2}\left(\partial_{3}(K)\right)=(\mathbf{v}-\mathbf{u})+(\mathbf{w}-\mathbf{v})+(\mathbf{x}-\mathbf{w})+(\mathbf{y}-\mathbf{x})+(\mathbf{u}-\mathbf{y})=\mathbf{0}
$$

Cycles, boundaries and homology

- $Z_{q}(K)=\operatorname{ker} \partial_{q}$ denotes the group of q-cycles
- $B_{q}(K)=\operatorname{im} \partial_{q+1}$ denotes the group of q-boundary cycles
- $H_{q}(K)=Z_{q}(K) / B_{q}(K)$ is the q-th group of homology.
- $H_{q}(K) \simeq F \oplus T$ por ser grupo abeliano finitamente generado.
- $\beta_{q}(K)=\operatorname{dim}\left(H_{q}(K)\right)$ is the q-th Betti number.

$$
\partial_{2}\left(\partial_{3}(K)\right)=(\mathbf{v}-\mathbf{u})+(\mathbf{w}-\mathbf{v})+(\mathbf{x}-\mathbf{w})+(\mathbf{y}-\mathbf{x})+(\mathbf{u}-\mathbf{y})=\mathbf{0}
$$

$H_{q}(K)=Z_{q}(K) / B_{q}(K)$

- Two cycles are homological if their difference is a boundary cycle.

Red cycles are homological in the torus

$\boldsymbol{H}_{1}(\boldsymbol{T})=\mathbb{Z} \oplus \mathbb{Z} \quad$ y $\quad \beta_{1}(T)=\mathbf{2}$

$z_{1}+z_{2}+z$ is a boundary cycle defined by the pink 2-chain

- In general, β_{q} records the number of homologically different holes!

The Euler characteristic

- Assume $K=\bigcup_{q=0}^{d} V_{q}(K)$.
- Its Euler characteristic is defined as $\chi(K)=\sum_{q=0}^{d}(-1)^{q}\left|V_{q}(K)\right|$.
- Due to the Euler-Poincaré formula, we have that $\chi(K)=\sum_{q=0}^{d}(-1)^{q} \beta_{q}(K)$.

(a) $8-12+6=2$
(b) $6-12+8=2$
(c) $20-30+12=2$

$$
\chi\left(S^{2}\right)=1-0+1=2
$$

Where are we? (I)

Ch. 2: Euler Characteristic Graph: Filters

- Idea proposed by Richardson and Weirman in [5]
- Fix a filter function g for every vertex and then extend it to the rest of q-simplices:

ECG: Thresholds

- T uniformly spaced thresholds $a=t_{0}<t_{1}<\ldots<t_{T}=b$.
- For each t_{i} we define $V_{q}^{(i)}=\left\{\sigma \in V_{q}: g(\sigma)>t_{i}\right\}$.
- $\chi^{(i)}=\sum_{q=0}^{d}(-1)^{q}\left|V_{q}^{(i)}\right|$ is the Euler characteristic at the i-th threshold.

Filter: 1/(10th nearerst neighbor) (KNN)

Computing the ECG: $O(V)$

- The computation is efficient by using a histogram and bucket-sort.
- The Euler Characteristic is a constant-time operation.

Bucket-sort to compute the ECG

The ECG

- the Euler Characteristic Graph is the graph obtained as χ_{i} vs. t_{i}.

$$
\text { ECG: } 1-\left(x^{2}+y^{2}+z^{2}\right)
$$

- Each ECG can be thought as a vector $\left(\chi_{0}, \chi_{1}, \ldots, \chi_{T-1}\right) \in \mathbb{R}^{T}$.

Where are we? (II)

SVM: linear separable case

- We have n labeled vectors $\left\{\mathbf{x}_{i}, y_{i}\right\}_{i=1}^{n} \subset \mathbb{R}^{d}$ with $y_{i} \in\{-1,+1\}$.
- Must split the labels with the best possible hyperplane \mathbf{H}.
- \mathbf{H} is defined by a normal vector \mathbf{w} and a scalar b.
- $\mathbf{H}=\{\mathbf{x}:\langle\mathbf{x}, \mathbf{w}\rangle+b=0\}$.

Constrained optimization

- In general for C^{1} functions we want to solve

$$
\begin{aligned}
\min f(\mathbf{x}), & \mathbf{x} \in \mathbb{R}^{d}, \\
\text { where } c_{i}(\mathbf{x})=0, & i \in E \\
c_{i}(\mathbf{x}) \geq 0, & i \in I
\end{aligned}
$$

- If $I=\varnothing$, then we can use Lagrange multipliers.
- Define the subset of active constraint indexes

$$
\mathcal{A}(\mathbf{x}):=\left\{i \in E \cup I: c_{i}(\mathbf{x})=0\right\}
$$

Only active constraints matter

- Consider the set of feasible directions which are obtained by linearized constraints.

$$
F(\mathbf{x})=\left\{\mathbf{s}: \mathbf{s} \neq 0,\left\langle\mathbf{s}, \nabla c_{i}(\mathbf{x})\right\rangle=0, i \in E,\left\langle\mathbf{s}, \nabla c_{i}(\mathbf{x})\right\rangle \geq 0, i \in I \cap \mathcal{A}(\mathbf{x})\right\}
$$

Generalizing Lagrange multipliers

Theorem (Karush-Kuhn-Tucker Conditions)

If \mathbf{x} is a local minimum and certain regularity holds at \mathbf{x}, then there are multipliers $\left\{\alpha_{i}\right\}_{i}$ such that the following system is satisfied:

$$
\begin{align*}
\nabla_{\mathbf{x}} \mathcal{L}(\mathbf{x}, \boldsymbol{\alpha}) & =0, \text { where } \mathcal{L}(\mathbf{x}, \boldsymbol{\alpha})=f(\mathbf{x})-\sum_{i \in E \cup I} \alpha_{i} c_{i}(\mathbf{x}) ; \tag{5.1a}\\
c_{i}(\mathbf{x}) & =0, i \in E ; \tag{5.1b}\\
c_{i}(\mathbf{x}) & \geq 0, i \in I ; \tag{5.1c}\\
\alpha_{i} & \geq 0, i \in I ; \tag{5.1d}\\
\alpha_{i} c_{i}(\mathbf{x}) & =0, \forall i . \tag{5.1e}
\end{align*}
$$

- If the optimization problem is convex, then KKT conditions are also sufficient.

SVM as constrained optimization

$$
\begin{array}{ll}
\min _{(\mathbf{w}, b) \in \mathbb{R}^{d} \times \mathbb{R}} & f(\mathbf{w}, b):=\frac{1}{2}\|\mathbf{w}\|^{2}, \\
\text { such that } & c_{i}(\mathbf{w}, b):=y_{i}\left(\left\langle\mathbf{x}_{i}, \mathbf{w}\right\rangle+b\right) \geq 1 \text { for all } i=1, \ldots, n .
\end{array}
$$

- With the KKT conditions and Wolfe dual the SVM problem is:

$$
\max _{\alpha_{i} \geq 0} \sum_{1 \leq i \leq n} \alpha_{i}-\frac{1}{2} \sum_{1 \leq i, j \leq n} \alpha_{i} \alpha_{j} y_{i} y_{j}\left\langle\mathbf{x}_{i}, \mathbf{x}_{j}\right\rangle
$$

where

$$
\begin{aligned}
\mathbf{w} & =\sum_{i=1}^{n} \alpha_{i} y_{i} \mathbf{x}_{i} . \\
b & =y_{i}-\left\langle\mathbf{w}, \mathbf{x}_{i}\right\rangle \quad \text { for some } \alpha_{i}>0
\end{aligned}
$$

SVM: non-separable linear case

- Suppose now there are mistakes $\xi_{i} \geq 0$ for each point.
- It is a actual mistake when $\xi_{i}>1$.
- We must minimize then $\sum_{i} \xi_{i}$.

Same optimization problem

$$
\begin{aligned}
& \min _{(\mathbf{w}, b, \boldsymbol{\xi}) \in \mathbb{R}^{d} \times \mathbb{R} \times \mathbb{R}^{d}} f(\mathbf{w}, b, \boldsymbol{\xi}):=\frac{\|\mathbf{w}\|^{2}}{2}+C\left(\sum_{i=0}^{n} \xi_{i}\right)^{k}, \quad C>0, k \geq 1 \\
& \text { such that } y_{i}\left(\left\langle\mathbf{x}_{i}, \mathbf{w}\right\rangle+b\right)+\xi_{i} \geq 1 \text { for all } i=1, \ldots, n \\
& \text { and } \xi_{i} \geq 0
\end{aligned}
$$

- With $k=1$, KKT and Wolfe again we obtain:

$$
\max _{0 \leq \alpha_{i} \leq C} \sum_{1 \leq i \leq n} \alpha_{i}-\frac{1}{2} \sum_{1 \leq i, j \leq n} \alpha_{i} \alpha_{j} y_{i} y_{j}\left\langle\mathbf{x}_{i}, \mathbf{x}_{j}\right\rangle
$$

- To test new points \mathbf{x}, we simply do

$$
\operatorname{class}(\mathbf{x})=\operatorname{sgn}(\langle\mathbf{w}, \mathbf{x}\rangle)
$$

SVM: Nonlinear case \& kernelization

- $\Phi: \mathbb{R}^{d} \rightarrow \mathcal{H}$, where \mathcal{H} is a high-dimensional Hilbert space where we solve linearly the SVM.
- We must use kernel functions $K: \mathbb{R}^{d} \times \mathbb{R}^{d} \rightarrow \mathbb{R}$.

$$
K(\mathbf{x}, \mathbf{y})=\langle\Phi(\mathbf{x}), \Phi(\mathbf{y})\rangle_{\mathcal{H}}
$$

- If we know K explicitly, we do not need to know Φ or \mathcal{H}.

Mercer theorem and RKHS's

Theorem (Mercer's condition)

For a compact subset $C \subset \mathbb{R}^{d}$ and given continuous function
$K: C \times C \rightarrow \mathbb{R}$ there exists a mapping Φ, and a Hilbert space \mathcal{H} such that

$$
\begin{equation*}
K(\mathbf{x}, \mathbf{y})=\langle\Phi(\mathbf{x}), \Phi(\mathbf{y})\rangle_{\mathcal{H}} \quad \forall \mathbf{x}, \mathbf{y} \in C \tag{5.2}
\end{equation*}
$$

if and only if for any $L_{2}(C)$ function $g: C \rightarrow \mathbb{R}$ (that is, g^{2} is Lebesgue-integrable on C) the following inequality holds

$$
\begin{equation*}
\int_{C} \int_{C} K(\mathbf{x}, \mathbf{y}) g(\mathbf{x}) g(\mathbf{y}) \mathrm{d} \mathbf{x} \mathrm{~d} \mathbf{y} \geq 0 \tag{5.3}
\end{equation*}
$$

- The proof uses machinery from functional analysis and Reproducing Kernel Hilbert Spaces.

Multiclass SVM: All-vs-All (AvA)

- Solve $\binom{m}{2}$ different SVMs, one per possible pair of labels.
- The (j, k)-th SVM will relabel the training data as $\left\{\left(\mathbf{x}_{i}, y_{i}\right)\right\}_{i=1}^{n}$ where $y_{i}=+1$ if $I_{i}=j, y_{i}=-1$ if $I_{i}=k$ and $y_{i}=0$ otherwise.
- Produce $\binom{m}{2}$ test functions

$$
t_{j, k}(\mathbf{x})=\left\langle\mathbf{x}, \mathbf{w}_{j, k}\right\rangle+b_{j, k} .
$$

- Max-votes strategy.

Where are we? (III)

Maximum Margin Problem (MMP)

- Unsupervised classification, as we assume n points \mathbf{x}_{i} with their labels y_{i} unknown.
- The Maximum Margin Problem (MMP) approach:
- Consider all the 2^{n-1} possible different labellings.
- Solve 2^{n-1} SVMs, one per labelling.
- Record 2^{n-1} margins and pick the largest one.
- The MMP procedure is extremely expensive.
- A given hyperplane $\mathbf{H}(\mathbf{w}, b)$ will label the data

$$
\operatorname{class}(\mathbf{x})=\operatorname{sgn}(\langle\mathbf{w}, \mathbf{x}\rangle+b)
$$

- We might just look for a hyperplane good enough.

Furthest Hyperplane Problem (FHP)

- Assume that the hyperplane goes through the origin.
- Translate and rescale accordingly.
- To solve MMP, we must solve efficiently the FHP $\binom{n}{2}$ times.

Approximate FHP

- We first want to compute a \mathbf{w} with norm 1 such that it maximizes $\operatorname{mean}\left(\left\langle\mathbf{w}, \mathbf{x}_{i}\right\rangle\right)$.
- Observe that the first singular vector is the answer.
- This approach might fail if there are outliers.
- Re-weight the distances: penalize the points close to the singular vector.
- Compute the first singular vector again and iterate.
- Consider the Gaussian combination of all of them.

Discussion and the curse of dimensionality

- This approximation approach was first presented by Karnin et. al. in [4].
- No clear generalization to non-linear, non-separable, non-binary cases.
- Computing the singular vectors is still a very expensive operation.
- If the data lies uniformly in \mathbb{R}^{d}, it will tend to be concentrated in a sphere.

Where are we? (IV)

Offerings in Templo Mayor (Mexico City)

- We have 128 digital meshes of pre-Columbian masks.
- These are embedded in a $[-1,1]^{3}$ cube with barycenter at origin.
- 8 families identified and a large unknown group.
- More details are explained by D. Jiménez in [3].

Set	NO. OF Items	Set	No. OF Items
02	24	07	4
03	6	08	3
04	4	09	7
05	19	10	59
06	2	TOTAL	128

ECGs: Planes

ECGs: Cylinders

ECGs: Spheres

年

- Filter functions based on principal curvature values were also considered.
- These curvature filters yielded terrible results.
- Perhaps these was due to the fact the masks are extremely detailed.

Methodology for supervised SVMs

Training: 8 clases

- Part of the items in families 02 and 05.
- All the items in families 03, 04, 06, 07, 08.
- The excluded items were those that D. Jiménez is skeptical about their current placing.

Test

- The 128 masks in total.
- Our main goal is to classify items currently in 10.

SVMs: 72 evaluaciones distintas

- Polynomial kernel $(\gamma\langle\mathbf{x}, \mathbf{y}\rangle+k)^{\operatorname{deg}}$.
- $\operatorname{Cost} C=10$.
- Take the mode if it corresponds to at least 85% of answers.

Family 02

(a) 01

(b) 02

(i) 09
(j) 10

(q) 17
(r) 18

(c) 03
(d) 04

(k) 11

(s) 19

(t) 20

(e) 05

(g) 07
(h) 08

(0) 15
(p) 16

(w) 23
(x) 24

Fam 02 - Cylinders $T=32$

ECG - cyl 32 - fam 2

[^0]
Fam 02 - Sphere $T=128$

(a) 73

(b) 76

(c) 87

(d) 89

(e) 94

(f) 103

$$
\text { ECG - sphsqrt128 - fam } 2
$$

Family 03

(a) 25

(b) 26

(c) 27

(d) 28

(e) 29

(f) 30

ECG = cyl2 - T=64-set = 3

Cylinders T=32

Spheres $T=128$

Family 04

(a) 31

(b) 32

(c) 33

(d) 34

(e) 35

(f) 36

Masks in the original set 04

$$
\text { ECG - cyl32 - fam } 4
$$

Family 05

(a) 37

(b) 38

(c) 39

(d) 40

(e) 41

(f) 42

(g) 43

(h) 44

(i) 45

(I) 48

(m) 49

(n) 50
(o) 51

Classification and Euler Characteristic

Cylinders $T=32$

Family 07

Cylinders $T=32$

Masks assigned to Set 07 after running 72 polynomial SVMs

$$
\text { ECG - cyl32 - fam } 7
$$

Spheres $T=128$

Methodology: Unsupervised SVMs

- For each pair of oppositely labeled points \mathbf{x}_{i} and \mathbf{x}_{j}, the unsupervised procedure yielded a splitting hyperplane $\mathbf{w}_{i, j}$.
- The unscaled margin defined by such hyperplane is

$$
\bar{\theta}_{i, j}:=\min _{1 \leq k \leq n}\left|\left\langle\mathbf{w}_{i, j}, \mathbf{x}_{k}\right\rangle\right| s_{i, j} .
$$

- We want to see if the procedure can at least split accordingly two different training families.
- To reduce computation time, the dimension of the ECG vectors was reduced via standard PCA procedure.

Some information to compute

- We need to keep track if our data is affected by the high dimensionality.

$$
\begin{aligned}
& \mu_{i, j}:=\frac{1}{n} \sum_{1 \leq k \leq n}\left|\left\langle\mathbf{w}_{i, j}, \mathbf{x}_{k}\right\rangle\right| s_{i, j} \quad, \quad \sigma_{i, j}^{2}:=\frac{1}{n} \sum_{1 \leq k \leq n}\left(\left|\left\langle\mathbf{w}_{i, j}, \mathbf{x}_{k}\right\rangle\right| s_{i, j}-\mu_{i, j}\right)^{2} \\
& M(\mu):=\binom{n}{2}^{-1} \sum_{1 \leq i<j \leq n} \mu_{i, j} \quad, \quad \Sigma(\mu)^{2}:=\binom{n}{2}^{-1} \sum_{1 \leq i<j \leq n}\left(\mu_{i, j}-M(\mu)\right)^{2} \\
& M\left(\sigma^{2}\right):=\binom{n}{2}^{-1} \sum_{1 \leq i<j \leq n} \sigma_{i, j}^{2} \quad, \quad \Sigma\left(\sigma^{2}\right)^{2}:=\binom{n}{2}^{-1} \sum_{1 \leq i<j \leq n}\left(\sigma_{i, j}^{2}-M\left(\sigma^{2}\right)\right)^{2} .
\end{aligned}
$$

Family 02 vs. Families 05 and 09

- The algorithm was sensitive enough to distinguish masks with holes from masks without holes.
- It was sensitive to distinguish eye-holes and mouth-holes from other kind of holes.
- This result was replicated with different dimension reductions, different filters and different number of thresholds.
- The ECGs provide enough information.
- The pair of masks to provide the splitting hyperplane varied, however.

Family 03 vs. 04

- However, the procedure failed to distinguish apart two non-holed families.
- The mean and variance variances of distances suggest that the results are subject to high-dimensionality afflictions.

g	M	dim	$\bar{\Theta}$	$M(\mu)$	$\sqrt{\sum(\mu)}$	$M\left(\sigma^{2}\right)$	$\sqrt{\Sigma\left(\sigma^{2}\right)}$
planar	2	6	5.4	5.1	1.8	1.3	1.6
planar	2	12	5.4	5.2	1.6	0.9	0.4
cylinder	$\sqrt{2}$	6	7.9	7.4	2.5	0.7	0.5
cylinder	$\sqrt{2}$	12	8.2	8.2	1.9	0.6	0.3
cylinder	1	6	7.6	8.0	1.3	0.8	0.3
cylinder	1	12	7.8	7.2	2.0	2.0	1.5

- A similar result was encountered when comparing families 04 and 05.

Final words

- The computation of the ECG is an easy computation, linear in time. It can be quickly computed despite objects' large number of vertices.
- There is a large number of variable to tune.
- Several of the supervised procedures yielded sensible classifications, despite the limited amount of training data.
- A larger database, even if synthetic, might provide even more sensible assortments.
- More items might allow better results with an unsupervised approach.

Referencias

回 M. A. Armstrong Basic Topology Springer-Verlag (1983), New York.
C. Burges "A Tutorial on Support Vector Machines for Pattern Recognition". Data Mining and Knowledge Discovery Vol. 2 (1998) pp.121-167. https://doi.org/10.1023/A:1009715923555
D. Jiménez Badillo, S. Ruíz Correa, O. Mendoza Montoya Analyzing formal features of archaeological artefacts through the application of Spectral Clustering.
Conferencia del Digital Classicist Seminar (06/11/2012). Deutsches Archäologisches Institut, Berlín. http://hdl.handle.net/11858/00-1780-0000-000B-216A-E
Z. Karnin et. al. "Unsupervised SVMs: On the Complexity of the Furthest Hyperplane Problem". Proceedings of the 25th Annual Conference on Learning Theory Vol.23, (2012) pp.2.1-2.17.
http://proceedings.mlr.press/v23/karnin12.html
E. Richardson, M. Weirman, "Efficient classification using the Euler Characteristic". Pattern Recognition Letters Vol.49, (2014) pp.99-106. http://www.sciencedirect.com/science/article/pii/S0167865514002050

[^0]: $\begin{array}{r}15 \\ -17 \\ -18 \\ -19 \\ -20 \\ -21 \\ \hline 22 \\ -24 \\ -73 \\ \hline \quad 76 \\ \hline 87 \\ \hline\end{array}$

