class: center, middle, inverse, title-slide .title[ # The Differential Subcellular Localization of Soybean Transcripts ] .subtitle[ ## An Additional Regulatory Mechanism of Gene Activity ] .author[ ###
Erik Amézquita
, Sutton Tennant, Sandra Thibivillers, Sai Subhash
Benjamin Smith, Samik Bhattacharya, Jasper Kläver, Marc Libault
—
Division of Plant Science & Technology
Department of Mathematics
University of Missouri
— ] .date[ ### 2025-07-25
[Manuscript under review]
] --- # mRNA localization at a sub-cellular level - Beyond gene expression counts: Spatial segregation and asymmetrical distribution of mRNA across the cytosol in the soybean nodule. - Molecular Cartography™ data provided by the Libault Lab .pull-left[  Infected soybean nodule cells. Glyma.05G092200 in green. Glyma.05G216000 in red. ] .pull-right[ **Goals**: "How *patterny* is a pattern?" - Quantify the spatial patterns followed by mRNA within individual cells. - Mathematically model all observed mRNA sub-cellular distributions. - *Use this mathematical model to differentiate cell types and genotypes.* **Challenge** - Develop a mathematical model that works for any cell size, orientation, shape, and dimension. ] --- class: inverse, middle, center # 1. mRNA localization to characterize cell types ### 2. Topological Data Analysis (TDA) to model localization patterns ### 3. Results and discussion --- ## Different nuclear versus cytosolic compartmentalizations across cell types  --- ## Different nuclear versus cytosolic compartmentalizations across cell types  --- # Density of transcripts versus cell location   But this characterization discards sub-cellular information! --- # Same density, different patterns  - 97 genes (including 10 bacterial ones) → 6 genes - 2938 cells → 918 infected ones. **Subcellular transcript patterns ↔ spatial location of the cell within the nodule** --- # How *patterny* is a pattern?  Patterns are subject to a large variety of cell shapes, sizes, orientations, and mRNA quantities. --- class: inverse, middle, center ### 1. mRNA localization to characterize cell types # 2. Topological Data Analysis (TDA) to model localization patterns ### 3. Results and discussion --- # Modeling with Topological Data Analysis  --- # Modeling with Topological Data Analysis  --- # Modeling with Topological Data Analysis  --- # Modeling with Topological Data Analysis  --- # Modeling with Topological Data Analysis  --- # Modeling with Topological Data Analysis  --- # Modeling with Topological Data Analysis  --- # Modeling with Topological Data Analysis  --- # Modeling with Topological Data Analysis  --- # Modeling with Topological Data Analysis  --- # Modeling with Topological Data Analysis  --- # Modeling with Topological Data Analysis  --- # Rotate 45 degrees for ML ammenability  --- # TDA: From patterns to numbers  --- class: inverse, middle, center ### 1. mRNA localization to characterize cell types ### 2. Topological Data Analysis (TDA) to model localization patterns # 3. Results and discussion --- # Focus on `\(H_1\)` and `\(H_2\)` <img src="../figs/molecular_cartography_2x4.png" width="500" style="display: block; margin: auto;" /> <img src="../figs/persistence_images_2x4.png" width="600" style="display: block; margin: auto;" /> --- background-image: url("../figs/bw25_scale32_-_PI_1_1_1_H1+2_cell_sample.png") background-size: 620px background-position: 75% 99% # PCA on all topological descriptors <img src="../figs/bw25_both_scale16_-_PI_1_1_1_pca_H1+2_gridded.png" width="350" style="display: block; margin: auto auto auto 0;" /> --- background-image: url("../figs/bw25_scale32_-_PI_1_1_1_H1+2_kde_sample.png") background-size: 620px background-position: 99% 50% .left-column[ ### PC 1 - Related to the number of distinct hotspots - Correlated to transcript number and cell size ### PC 2 - Related to the heterogeneity of hotspots - Correlated to transcript density ] --- # Connecting PC 02 to the biological context  - Senescent cells exhibit a distinct transcriptomic spatial pattern compared to the rest of population. - Loss of mRNA localization may be a lesser known contributor to cell senescence. --- # We define a morphospace of transcriptomic patterns  # We then work "backward" --- class: bottom background-image: url("../figs/scale32_-_PI_1_1_1_H1+2_synthetic_30_clusters.jpg") background-size: 900px background-position: 50% 1% <img src="../figs/scale32_-_PI_1_1_1_H1+2_synthetic_pca_30_clusters.jpg" width="600" style="display: block; margin: auto;" /> --- class: bottom background-image: url("../figs/scale32_-_PI_1_1_1_H1+2_synthetic_varclusters.jpg") background-size: 900px background-position: 50% 1% <img src="../figs/scale32_-_PI_1_1_1_H1+2_synthetic_pca_varclusters.jpg" width="600" style="display: block; margin: auto;" /> --- # Discussion and future directions **Biologically speaking** - Senescent cells exhibit a distinct transcriptomic spatial pattern compared to the rest. - Loss of mRNA localization may be a lesser known contributor to cell senescence. - *How does the **morphospace of patterns** change if we take into account more genes, more cell types, more tissues, and more mutants?* **Mathematically speaking** - Topological Data Analysis offers a robust way to encode the shape of patterns. - Robust to differences in scale, underlying boundaries, or orientation. - *Be much more **systematic** to generate and evaluate synthetic spatial patterns* <img src="../figs/D2_GLYMA_05G092200_z_kde_pd_suplevel_by_both_00512.jpg" width="550" style="display: block; margin: auto;" /> --- class: inverse # Thank you! <div class="row"> <div class="column" style="max-width:60%; font-size: 15px;"> <img style="padding: 0 0 0 0;" src="https://bondlsc.missouri.edu/wp-content/uploads/2023/11/libault-returns-to-bond-lsc-as-plant-scientist-with-single-cell-focus-1.jpg"> </div> <div class="column" style="max-width:40%; font-size: 24px; line-height:1.25"> <p style="text-align: center;"><strong>Contact and slides:</strong></p> <p style="text-align: center;color:Blue">eah4d@missouri.edu</p> <p style="text-align: center;color:Blue">ejamezquita.github.io</p> </div> </div> <div class="row"> <div class="column" style="max-width:35%; font-size: 20px;"> <p style="font-size: 25px; text-align: center;"> Libault Lab (MU) </p> <ul> <li><strong>Marc Libault</strong></li> <li><strong>Sandra Thibivillers</strong></li> <li>Hengping Xu</li> <li>Sahand Amini</li> <li>Hong Fu</li> <li><strong>Sutton Tennant</strong></li> <li>Md Sabbir Hossain</li> <ul> </div> <div class="column" style="max-width:65%; font-size: 20px;"> <p style="font-size: 25px; text-align: center;"> With help from:</p> <ul> <li>Sai Subash (Nebraska-Lincoln)</li> <li>Benjamin Smith (UC Berkeley)</li> <li>Sergio Cervantes-Perez (Arizona)</li> <li>Samik Bhattacharya (Resolve Biosciences)</li> <li>Jasper Kläver (Resolve Biosciences)</li> <ul> </div> </div> Manuscript under review --- # Mathematical motivation: stability - [**Theorem (Cohen-Steiner, Edelsbrunner, Harer, 2007)**](https://doi.org/10.1007/s00454-006-1276-5): Given a nice enough topological space `\(\mathbb{X}\)` and two nice enough filtration functions `\(f,g:\mathbb{X}\to\mathbb{R}\)`, then `$$d_B(\text{dgm}(f), \text{dgm}(g)) \leq \|f-g\|_\infty,$$` - where `\(d_B\)` is the bottleneck distance. - **Translation**: If the original complex wiggles a tiny bit, then the elements of its related persistence diagram will wiggle only a tiny bit as well. ## However - Outside stable distances, it is hard to do anything interesting in the space of persistence diagrams. - E.g.: there are no unique means! - Hard to perform Machine Learning directly with persistence diagrams --- # Mathematical justifications - **Definition:** Given two persistence diagrams `\(D_1, D_2\)`, for `\(1\leq p<\infty\)`, we define the *p-Wasserstein* distance between them as `$$W_p(D_1, D_2) := \inf_{\gamma:D_1\to D_2}\left(\sum_{u\in D_1} \left\| u-\gamma(u) \right\|_\infty^p\right)^{1/p},$$` where the infimum is over all possible bijections `\(\gamma: D_1\to D_2\)`. - **Theorem [[Mileyko *et al* (2011)](https://doi.org/10.1088/0266-5611/27/12/124007)]:** For nice filtrations, the persistence diagrams are Wasserstein-stable under small perturbations of the data they summarize. - **Theorem [[Adams *et al.* (2017)](http://jmlr.org/papers/v18/16-337.html)]:** The persistence image `\(I(D)\)` of a persistence diagram `\(D\)` with Gaussian distributions is stable with respect to the 1-Wasserstein distance between diagrams. ### If the overall shape/pattern is perturbed a little bit, then the resulting persistence images are perturbed only a little bit as well --- # Software used .pull-left[ - All the work has been done in python with mostly standard libries (`numpy`, `scikit-learn`, `matplotlib`, `pandas`, etc.) - KDEs computed efficiently with [`KDEpy`](https://kdepy.readthedocs.io/en/latest/) - Sublevel set filtration of images and persistence diagrams done with [`gudhi`](https://gudhi.inria.fr/)  ] .pull-right[ - Persistence Images computed with [`persim`](https://persim.scikit-tda.org/en/latest/)  ]